\qquad Date \qquad Class \qquad

L[Eson Review for Mastery

Estimating Square Roots

To locate a square root between two integers, refer to the table.

Number	1	2	3	4	5	6	7	8	9	10
Square	1	4	9	16	25	36	49	64	81	100
Number	11	12	13	14	15	16	17	18	19	20
Square	121	144	169	196	225	256	289	324	361	400

Locate $\sqrt{260}$ between two integers.
260 is between the perfect squares 256 and 289: $256<260<289$
So: $\sqrt{256}<\sqrt{260}<\sqrt{289}$
And: $16<\sqrt{260}<17$

Use the table to complete the statements.

1. \qquad $<39<$ \qquad 2. \qquad $<130<$ \qquad
\qquad $<\sqrt{39}<$ \qquad
\qquad $<\sqrt{39}<$ \qquad
.
$<\sqrt{130}<$ \qquad
\qquad $<\sqrt{130}<$ \qquad

After locating a square root between two integers, you can determine which of the two integers the square root is closer to. 27 is between the perfect squares 25 and 36:

$$
25<27<36
$$

So: $\quad \sqrt{25}<\sqrt{27}<\sqrt{36}$
And: $5<\sqrt{27}<6$
The difference between 27 and 25 is 2;
the difference between 36 and 27 is 9 .
So, $\sqrt{27}$, is closer to 5 .

$$
\begin{gathered}
25<27<36 \\
2 \quad 9
\end{gathered}
$$

Complete the statements.

3. $100<106<121$
4. \qquad $<250<$ \qquad
\qquad

$$
<\sqrt{106}<
$$

\qquad
\qquad

$$
<\sqrt{106}<
$$

\qquad
$106-100=$ \qquad
$121-106=$ \qquad
$\sqrt{106}$ is closer to \qquad than \qquad
\qquad $<\sqrt{250}<$ \qquad

$$
<\sqrt{250}<
$$

\qquad
250 - \qquad $=$ \qquad
\qquad $-250=$ \qquad
$\sqrt{250}$ is closer to \qquad than \qquad
\qquad Date \qquad Class \qquad
Lesson Homework and Practice

4F Finding Square Roots

Each square root is between two integers. Name the integers.

1. $\sqrt{10}$
2. $\sqrt{24}$
3. $\sqrt{51}$
4. $\sqrt{39}$
5. $\sqrt{66}$
6. $\sqrt{30}$
7. $\sqrt{78}$
8. $\sqrt{87}$
\qquad
\qquad
\qquad
\qquad

Use a calculator to find each value. Round to the nearest tenth.

9. $\sqrt{18}$
10. $\sqrt{63}$
11. $\sqrt{19}$
12. $\sqrt{41}$
13. $\sqrt{53}$
14. $\sqrt{98}$
15. $\sqrt{54}$
16. $\sqrt{72}$
17. $\sqrt{83}$
18. $\sqrt{120}$
19. $\sqrt{200}$
20. $\sqrt{489}$
21. The distance a person can see at sea is measured in miles by using the formula $d=\sqrt{\frac{3}{2} h}$, where h is the height in ft above sea level. About how many miles can a person see that is 8 feet above sea level? Round the answer to the nearest tenth of a mile.
22. The length of the hypotenuse of a right triangle is the square root of the sum of the squares of the measures of the other two legs of the triangle. Approximate the length of the hypotenuse of a right triangle if the legs have measures 12 and 15.
23. At an accident scene, a police officer may determine the rate of speed, r, in mi / h, of the car by using the following formula $r=\sqrt{20 \ell}$, where ℓ is length of the skid marks. How fast was a car going if the skid marks at the scene are 180 ft long?
\qquad
